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Supercoherent states 
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Departamento de Fisica, Universidad Simdn Bolivar, Apartado 80659, Caracas 1080-A, 
Venezuela 

Received 23 May 1985, in final form 11 November 1985 

Abstract. We present the supercoherent states. They are introduced as the eigenstates of 
the supersymmetric annihilation operator of the quantum mechanical supersymmetric 
harmonic oscillator. They have a compact expression in terms of the standard (bosonic) 
coherent states. For each value of the complex parameter z we now have two linearly 
independent orthogonal supercoherent states. One of them has pure fermionic character 
and is the more classical, while the other is fully supersymmetric (i.e. the mean value of 
the Klein operator when the system is set in this state vanishes). There are no purely 
bosonic supercoherent states. The supercoherent fermionic states saturate both the Heisen- 
berg uncertainty relation and the new entropic uncertainty recently introduced by Deutsch, 
while the supersymmetric ones almost (but not exactly) make it. They give a classical (or 
almost classical) mean value for the energy of the system and do not spread along their 
time evolution. 

1. Introduction 

Today there is no need to explain the importance of the coherent states which can be 
found in three different ways: as minimum uncertainty states, as eigenstates of the 
annihilation operator or as displacement operator coherent states (Nieto 1984). 

Supersymmetry almost naturally obliges us to introduce the superspace as the 
intrinsically quantum mechanical refinement of ordinary (bosonic) space. It has to be 
asked what should be (if it exists at all) the supersymmetric generalisation of the 
standard coherent states, once one is aware of the existence of the supersymmetric 
harmonic oscillator. This question is more interesting now that the relevance of 
supersymmetry for interrelating spectra of different atoms and ions has been pointed 
out (Kostelecky and Nieto 1984). 

We introduce them as the eigenstates of the corresponding (supersymmetric) annihi- 
lation operator. They constitute, for each complex z, a two-dimensional subspace 
having a natural orthogonal basis {lzf)lzs)}. The different states of this annihilation 
eigenspace do not have the same quantum mechanical (or classical) properties; their 
analysis singles out { 123, lz,)} as the two exclusively physically relevant states, as will 
be shown in §§ 3 and 4. 

The two kinds of uncertainties (the standard and the recently introduced entropic 
one) (Deutsch 1983, Partovi 1983) related to the observables x and p are given in 0 3. 
Their explicit value for lzf) and Iz,) is obtained. In § 4 we analyse the time evolution 
of the different elements of the supersymmetric annihilation subspace. 

t Partially supported by CONICIT grant S1-972. 
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2268 C Aragone and F Zypman 

In the next section, in order to make the paper self-contained, a quick review of 
the superspace formulation of N = 1 quantum mechanics is presented, leading for a 
particular choice of the superpotential to the one-dimensional supersymmetric har- 
monic oscillator. 

Finally we dedicate the last section to making some comments and discussing the 
results presented in this paper. 

2. Review of N = 1, d = 1 superspace quantum mechanics 

The supersymmetric harmonic oscillator is a particular case, for a specific choice of 
the superpotential, of the N = 1 supersymmetric quantum mechanical model presented 
by Salomonson and van Holten (1982) and later also considered by Cooper and 
Freedman (1983). A conceptually careful analysis of this quantum mechanical super- 
symmetric system can be found in De Witt (1984). 

Superspace consists, in this case, of the points { t,? 8, e} having one real bosonic 
coordinate and two complex Grassmann variables 8, 8 = e+, such that 

[e, t i = [ &  t ] = o  e2=a2=o=(8, e). ( l a )  
The d = 1 metric is determined by T""= -1. There are two spinorial charges q, Q whose 
anticommutator gives the one-dimensional translation operator 

(4, q)+=2p0=-2po=2ia, .  (1b) 

4 ( t, e, 6)  = exp( i@+ i oq - i tpo) 

(gp#J)(r, e, 8 ) = 4 ( t + i l B - i 6 5 ; 8 + l , 6 + c )  (2b) 

864 = (54  + qc14 q 5 a, + it%, q= -a,--iaa,. (2c) 

Superfields in the physical representation are defined in the standard way (Ferrara 
et a1 1974) 

transforming under a pure supersymmetry g ,  = exp(ilq + iijl] according to 
(2a) 

or equivalently, if g,  is near the identity, giving rise to the infinitesimal form 

The associated spinorial derivatives turn out to be, in the same (symmetric) rep- 
resentation, 

D =  -a,+ieb, D = a,--iea,. (3a) 

( 0 ,  D)+ = 2p0 D2=O=D2 (3b) 

They constitute a representation of the ID  supersymmetric algebra (1 b): 

anticommuting with (qQ).  The quantum mechanical model is constructed by means 
of a Hermitian (real) superfield 4 = 4+: 

(4) 
It is convenient to introduce the supersymmetric momentum operator p1 = p1 = 

4 ( t, e, 6)  = x( t ) + i ell/( t ) - i IJ( t ) 6+ A ( t ) SE 

2-'[D, d]. Together with ( l b )  we obtain 

DD =po+pl  D D = p o - p l  = ( P o l 2  ( 5 a )  

p1D=-Dp,  =POD p1D = -Dpl = -pod.  (56) 

and the useful relationships 
- 
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The components of 4 can be obtained by taking spinorial derivatives at 6 = e= 0 
(Gates et a1 1983) 

41e=o=8= x 041 = -i+ D4 = i$ PI41 =A. ( 6 a )  

Actions in this 3~ superspace can be built on by integration in superspace: 

I-[ Y(t ,8 ,  8 ) d r d 6 d ~ ~ I Y d 3 i = I d r ( p , 4 ~ )  (fib) 

using the fact that for one Grassmann variable J’6 d6  = + l  =J’ d e 6  
The general action has the superspace form 

c 

Its component expression is immediately obtained by substitution of I d6 de+p l (  * )I: 

I ( + )  = 1 dt[P 1 e4  2 P14)l-P,f(4)Il  

= 4( A - xx + i $4 + i+$) - ($’( x)[ +, $1 + AY( x )). (76) 

Taking into account the infinitesimal form of the supersymmetry transformation 
(2c), recalling the definition of the components fields as spinorial derivatives at 
vanishing 6 ( 6 a )  and realising that (comparing definitions (2c) and ( 3 c ) ) ,  again at 
vanishing 6, 

91 = -Dl 41 = -61 ( s a )  

S , x = S , 4 / = ( 5 q + ~ f ) 4 I = - ~ D 4 ) - 6 4 ) I = i 5 s - i ~ ~  ( 8 b )  

a,+ = -(x+iA)f S,A = l* + $6 ( 8 c )  

one obtains the supersymmetric transformation laws 

Instead of the creation-annihilation fermionic variables +, 6 one can introduce 
into the action (76) the Hermitian variables G I ,  cL2: 

$ = - i+J 6 2-1’2(+1 + i+2) s;, = 9 1 , 2 .  (9) 

Independent variations of A give its value A =f’(x) which can be inserted into (76) 

I = ( p x  + t i  ( 1 ou ) 

H =tp2+5f(x)2+tif , (x)[+l ,  +,I. ( l ob )  

[x, PI = i (+*, + p ) +  = S,, a, P = (192). ( 1 l a )  

($, +)+ = 1 ($9  + ) = O = ( $ ,  4) (1lb)  

in order to obtain the expression 

4, + ti s2 4, - f p 2  - tp’ - if,( x I2 - +ij”(x) [ , 
showing that the Hamiltonian is 

In the coordinate representation the canonical commutation relations are 

Consequently for the creation-annihilation operators 

in addition to [ s1, +,I = i[ $, $ 3  
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In this representation fermions JI, 6 can be represented by the time-dependent 
two-dimensional matrices 

= (; :) exp( id t ) )  60) = (: t) exp(-iCP(t)) (1lc)  

where 4 ( t )  satisfies 

dt) = f Y x >  ( 1 l d )  

(for the supersymmetric harmonic oscillator 4 ( t )  = or). The fermionic number Nr 
having eigenvalues ( 0 , l )  turns out to be 

In this case wavefunctions become two component objects 9 ( x )  = (4,(x), & ( x ) ) ~  
and the Hamiltonian is 

H = f p 2  +if( x)’ - f$”( x ) u ~ .  (10c) 

The supersymmetric harmonic oscillator corresponds to choosing f (x) = fwx’.  Its 
Hamiltonian will be 

(10d) 2 + ~ w 2 x 2 - ~ o u  = H  
2 P  2 2 3 -  b 2 3 .  

In the natural units we are employing, x- ~5’’~, o - M. 
The eigenstates of this system can be labelled by their energy E and their fermionic 

number, 1 or 0, according to their behaviour with respect to the fermionic number 
operator Nr. (Instead of considering the Nf which commutes with H ,  the Klein operator 
K ( - l ) N f =  -u3 which also commutes with H can be taken.) 

Since 

any state ( & ( x ) ,  - )T has a pure fermionic character while those of the form ( e ,  & ( x ) ) ~  
are purely bosonic. 

In the following we introduce the notation In) for the unitary eigenstates of the 
standard harmonic oscillator: 

H b l n ) = ( n + f ) o l n ) .  (12a) 

The associated (not normalised) coherent states (Klauder and Sudarshan 1968) are 
CO 

\ z ) =  1 ( n ! ) - ” 2 z n \ n ) .  
n = O  

It is straightforward to realise what the energy eigenstates and 
eigenvalues of the supersymmetric Hamiltonian are (10d) 

For each non-vanishing natural n the corresponding eigenspace 
When the energy vanishes there is no degeneracy, indicating 

is not spontaneously broken. 

(126) 

their corresponding 

is two-dimensional. 
that supersymmetry 
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It is worth recalling the standard definitions of creation and annihilation operators 
for the bosonic system Hb, as well as their commutation relations 

a = (2w)-'l2(ip + ox) (144 b) 

[x, PI = i [ a ,  a+] = 1. (14G d )  

x = ( 2 w ) - ' / ' ( a + + a )  p = i(w/2)'/2(a+ - a ) .  (14e9.f 1 

a+ = (2w)-'I2( -ip + w x ) .  

Then 

Their inversion gives for the position and momentum operators 

In terms of these operators the full Hamiltonian (10d) can be written 

H=w(':' ' ) = w q  2 

aa + 

where the spinorial square root of H turns out to be the Hermitian operator 

q"(  -ia * ' a+ )=9+ .  

Now having described the supersymmetric harmonic oscillator we can go further 
and present the associated coherent states. 

3. Supercoherent states 

An important operator because of its supersymmetric meaning is the supersymmetric 
annihilation operator 

It satisfies 

[A ,  HI = wA [A,  A+]  = 2 Nf 

the first equation being similar to the well known relation [a, Hb] = wa which holds 
for the harmonic oscillator. From this equation it is straightforward to show that, if 
qn belongs to the energy eigenspace En = no, then IAYn) belongs to the En-, subspace 
for n a  1. 

This can also be seen directly since 

The supercoherent states (2) are defined as the eigenstates of A, 

A ( 2 )  = zlZ). (19) 
In order to solve this equation we expand 12) in terms of the natural basis {IO), Ifn)= 
(In),*)T, l b n ) E ( *  ,In-1))'7 
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After insertion into (19) we find that (anr c,) are determined by 

Z n  1 
m a, =-(aoz” - clnz”-’) m Cn+1 = C1 - 

leading to 

la = aolzr) + C l I Q  

where 

lz’) meaning a/az{lz)}, ( z )  denoting the standard bosonic coherent states (126). From 
a ( n )  = &In - l), a+ln) = ( n  + 1)1’21n + 1) one can calculate how Iz), Iz’) transform under 
the action of (a ,  a’) and their respective norms. 

It is immediately obvious that 

alz) = zlz) a+/z) = lz’) aJz‘) = / z ) +  zlz’) (22a) 

W e )  (z’lz‘) =- (zlz’) = ( 1  + (zl’) exp(lz1’) 

( z / z ” ) = i ( z J z ) =  i2 exp(lz12) (22f) 

a 
az 

a’ 
az 

a a2 
(z’Iz’?=x az -{(zlz)}= az2 ~ ( 2 + ) z J ~ )  exp()z12). (22g) 

It is convenient to introduce the new set of states {lz,)} which belong to the 
supercoherent two-dimensional subspace (21 a )  

They are orthogonal to /zr) 

( Zrl Z J  = 0 

(ZfJZf) = exp(lz12) = (zlz) = (ZSIZS). 

(23b) 
and have the same norm as /zr): 

(23c) 
Any other vector belonging to the two-dimensional coherent subspace (21a) can 

be expanded as a function of {lzr), lz,)}: 

l Z > = 4 z r ) + P I ~ J  ( Z P )  = (bI2+ MI2) exp(lz12). (23d) 
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Due to its very simple form, (zf) has the same properties its bosonic constituent lz) 
has in the sense that 

(p)f = f i  Im z ( 2 4 ~  

(Ax) f ( x2)f - ( X) = f (24c) 

(Wf = (p2)r - (P): =; (AX)XAP)r = i. (244 e) 

These supercoherent states Izr) constitute the more classical-like states of the 

Let us consider the position and momentum operators x, p as given in (14e) and 
ordinary harmonic oscillator in the following sense. 

(14f), where for the supersymmetric system a, a+ abbreviates 

(25% b) 

Commutators with H have the respective values 

[a,  HI = w a  [ U + ,  HI = -wa+ .  (2% 4 

(a ) (  t )  = (a)o exp(-iwt) ( a + ) ( t )  =(a+) ,  exp(iwt) (25e) 

The time evolution laws of the mean values of a, a+ can thus be found immediately: 

and consequently, after definitions (14e) and (14f), it is possible to write down the 
time evolution of position and momentum mean values: 

(x)( t )  = (2w)-’/2[(a)o exp(-iot) +(a+), exp(iwt)] 

( p ) ( t )  = i(o/2)’/’[(a+), exp(iwt) - (a )o  exp(-iot)]. 

(26a) 

(266) 
These solutions have to be compared with the exact solutions xc(t), and p c ( t )  of 

the classical harmonic oscillator defined by H b  = 2-’p2+ 2-’w2x2, 

xc(t) = (2w)-’”[z0exp( - i w t ) +  f o  exp(iwt)] zo= (2w)-’’2(ip0+wx0) (27a, b) 

p c ( t )  = i ( ~ / 2 ) ’ / ~ [ ~ ~  exp(iwt) - zo exp(-iwt)] (27c) 

where the classical energy is 

Hb = uIzO12. 

Comparing evolution laws (26) and (27) we can say that the system defined by H 
will be in a classical state ITcl) iff 

(a)o = ( % l a w  = zo 

( W O =  ( ~ c l l ~ l ~ c l )  = w1z0l2. 

I%J = ( C l ,  

~ ( 1 1 ~ 1 ~ : 1 ) 1 1 2 +  l l a I W l 2 +  11*:1112) = w1z0l2 

In terms of its two components can be written 

One has that (27f) amounts to 
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If one considers the operator B = (a  - zo) lF,  conditions (27e) and (27s) imply that 

0 s (*Cl1 B+B*Cl) = w ( 1 1  al*LJ 1 1 2  + II 4*:l)ll - lzol’). (29b) 
Introducing (29a) into this last inequality one ends up with 

o s  ~ ~ B ~ * C , ) ~ ~ 2 =  - w ~ ~ * : l / ~ 2 s o  

IIBI*dII = 0 = Il*:lll 
leading to 

for the classical state of the supersymmetric harmonic oscillator. Equation (29d) can 
be quickly solved 

I*J = (*:I, . )T (30a) 
where the non-vanishing component has to obey the eigenvalue equation 

whose solution evidently is the supercoherent state /zf) defined in (21 b), i.e. the most 
classical state of the harmonic oscillator is the supersymmetric fermionic state /zf). 

The same mean values (24) can be calculated when the system is in the supercoherent 
state lz,) = 2-”’(.4z) - lz’), 1 ~ ) ) ~ :  

~~z ,~~-’ (z ,~x~z , )  = Re z (31a) 

l l~s l l -2~~s lPlzs~  =Jz Im z. (31b) 
Moreover, using the algebra (22) it can be seen that 

Consequently 

(AX):= (x’), - (x): = 1 

U P ) ?  = (P’ ) ,  - ( P ) 5  = 1. 
(33a) 
(33b) 

They have a uniform spread, even though it is not the minimal one (24c) and (24d). 
Their uncertainty becomes unity: 

( A X ) , ( A P ) ,  = 1. (33c) 
Now we explore the results corresponding to choosing an arbitrary vector (21 a )  

Let lz) be given in the form 
belonging to the two-dimensional space spanned by { lzf), Iz,)}. 

Iz)=sin e ei91zf)+cos e(z,). (34) 

(x),= ~ / ~ ~ ~ - ~ ( z ~ x ~ z ) = d ? R e z - ~ c o s  cp sin28 (35a) 

( p ) , =  ~ ~ z ~ ~ - ’ ( z l p ~ z ) = J z ~ m z - f s i n c p  s in26  (35b) 

(x2),= 1+2(Rez)’ -~s in2  O-&!(Rez)coscp sin28 (35c) 
( p 2 ) ,  = 1+2(1m z)’-;sin2 e - Jz ( Im z) sin cp sin28 (35d) 

The mean values of {x, x2, p ,  p’} when the system is in the lz) state can be obtained 
immediately: 

which for 8 = 0 reduce to expressions (31) and (32). 
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It happens again that (AX)’ and ( A P ) ~  do not depend upon z. They turn out to be 

(Ax): = 1 -f sin2 6 - f  cos2 cp sin’ 28 (35e) 
(Ap); = 1 -f sin2 6 - f  sin2 cp sin’ 28. (35f) 

f (  e, 4 )  = f sin’ e + f cos2 4 sin’ 20 = 4-’[1- COS 28 + COS’ 4(  1 - COS* 2e) i  

Therefore, each uncertainty is bounded between & and 1, their product having the 

(36) 
which can be shown to be bounded between f and 1, the values corresponding to 12,) 
and lz,) respectively. 

The fact that Izr) is a pure fermionic state is reflected through the value of ( K ) ,  

The analysis of 

shows that 0 sf( 8, cp) d &. 

exact value 

( A X ) : ( A ~ ) ; = ~ ( ~ + C O S ~  e+2cos6  e+sin22cp sin2 e cos4 e)  

(K) f=- l  (37a) 

( K ) ,  = 0. (376) 

( W f  = 1 (Nfh = f .  (37c, 4 

while lz,) is a pure mixture of fermionic and bosonic states since 

Using the fermionic number operator Nf one would have equivalently found 

Recently, Deutsch has proposed a more appropriate definition of the uncertainty 
using the concept of quantum entropy SA( ($ ) )  of an observable A when the system is 
in the state I$) 

(the sum is over the whole set of A eigenstates Ala) = a la ) ) .  

operators ( x , ~ ) .  Since by (21b) 
Let us first consider the supercoherent pure fermionic states lzf)’ and the set of 

we have 

(xjtf) = (n!)-’/’z”(xJn> exp(-l~1~/2) 
m 

n=O 

m 
1 / 2  n (PI&)= c ( n 9 -  z (Pln>exP(-Izl2/2) 

n = O  

1 CO 

= 1 (n!)-’/’z” exp(-lzj2/2)(-i)“2”/2rr’/4 ( n  I)-”’ exp(-p2/2)~ , (p> 
n = O  

(39b) 
where Hn(x)  and H n ( p )  are the Hermite polynomials. Recalling the Rodrigues’ 
expression for these polynomials it can be seen that 

(pi?,) = T-’’4 exp(-lzI2/2) exp(p2/2) exp[-(p + i ~ / J 2 ) ~ ] .  (40a) 
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Therefore 
l(pl.ff)12 = T - ” ~  exp[-(p -a Im z)’] (406) 

and consequently the entropy of the observable p when the system is in the unitary 
state llzfll-l Izf) has the value 

+a3 

= T-’/’ exp[-(p -a Im 2)’ ln{.lr-1/2 exp[-(p -4 Im z)’]} dp 
-02 

=++I1 n T. (40c) 
The entropy of the position operator x when the system is set in the state (Zf) can 

be computed in a similar way from (15a). One obtains 

Therefore the uncertainty in {x, p }  when the system is in the state I;,) has the value 

(40e) 
i.e. the supercoherent states lzf) saturate the entropic bound conjectured some time 
ago by Everett (1973) and proved later on independently by Beckner (1975) and 
Bialynicki-Birula and Mycielski (1975). 

In the case of the IzJ supercoherent states an orthonormal basis for the position 
operator is 

s,.(li,))=++iln T. (40d) 

u(x ,  P, 19) = SAI&))+ sp(l:f)) = 1 +In T 

Taking into account the expression (23a) and again using the Rodrigues’ form for 
the Hermite polynomials we have that 

1 
(xfl&)12 =z ( x - a  Re 2)’ exp[-(x -a Re z)’] 

I ( x b / Z S ) I 2 = ~ e x p [ - ( x - a  Re z)’]. (42b) 

(42a) 

1 

The entropy of x when the system is in the unitary state I f )  is given by 

sx(Ifs)) = -5  dx{l(xt-I&)/* lnl(xfi&)/’+ l(Xbl;,>/2 ln/(Xbl%))12}. ( 4 2 4  

Insertion of the values found in (42~1, b )  for ~(xf~.2s)~2, l(xbl.2s)[2 gives for this 
expression 

= ~ I ~ I T + $ I ~ I ~ + ~ C  
where C is the Euler constant. 
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In a similar way we can evaluate the entropy of the momentum when the system 

The momentum eigenstates are given by 
is in the state lzs). 

Then 

Sp(lfs)) = -I d p ( b f l  -s ) I 2  1nl(dis>12+ I(pblis>l' 1n)(pb)is)12) (44a) 

where 

(446 1 
1 

I<p&?JI' = 7 ( p  - Jz Im z)' exp[-(p - Jz Im z)'] 
IT 

and 

1 
b b l z ^ s ) / 2  = p exp[-(p - fi Im z)'] .  ( U C )  

After introduction of these values of {(pflis); (ps12s)} into (20a) we obtain an 
expression identical to (42d), i.e. 

Sp( I&)) = 4 In + + In 2 ++c. (44d 1 
The entropic uncertainty of { x , p }  when the system is set in turns out to be 

~ ( x ,  p ,  /is>) = s,( )is>) + Sp( lis>) = 3 In 2 + c + In IT 

= 2.7 +In IT. (44e) 

Observe that neither U ( x ,  p, nor U ( x ,  p ,  Iz)) depend upon z. They have a fixed 
value either for any fermionic supercoherent state lzf) or for any pure supersymmetric 
state (is). 

4. Time evolution of { Iq>, I & > )  

Since Wn,O = (U(''.") + P(lnL,,); 'Po = ('0') it is immediately obvious that their time evol- 
ution is given by 

*o( t )  = *o = ('0)). 

The evolution of lzf> is easily obtained after (45a) and (456) 

while the time evolution of Iz,) takes the form 

l z s ( t ) )  = exp(-iwt)l(z exp(-iwt)),>. 

(45 tJ 1 



2278 C Aragone and F Zypman 

Both lz,-(t)) and ( z , ( t ) )  retain their original structure. Consequently they do not 
spread along their time evolution keeping their respective uncertainties (24c)-(24e), 
(35 a)-(  35 c) constant. 

On the contrary the generic state (34) will have a modulation in its spreading (35e) 
and (35f) due to 4 + + + wt. This property points towards showing that the really 
relevant supercoherent states are just Izf) and 12,). 

For an arbitrary Iz) = sin 0 ei'(zf)+cos elz,) in the two-dimensional space {lzf), lz,)} 
its evolution will have the form 

(z( t ) )= exp(-iwt){sin 8 exp[i(cp+wt)]l(z exp(-iwt))f)+cos el(z exp(-iwt)),)} (46c) 

showing an overall phase factor exp( - i d ) ,  irrelevant in any physical calculation 
concerning the observables {x, x', p ,  p'} and a t dependence in the Q phase coefficient 
which will introduce time dependences in the computation of quantities like (35). 

It is also interesting to obtain the mean value of the energy when the system is in 
the generic state Iz, 4, e). Using the properties quoted in (22) we have 

(47) 
1 

w-'(z, e, cplHlz, 8,Cp)=1~1~+cos' e--Re{zeiq}sin28. 
J 2  

This result shows that the generic states Iz, e ,+ )  may have energies quite far from 
/z(', unless 6 = 0 (and we are in the state lz,)) or 0 = 7r/2 (corresponding to lzf)). In 
these two cases the last term in (47) vanishes, giving rise to 

respectively. 

5. Discussion and comments 

Using the simplest quantum mechanical ( N  = 1) supersymmetric system which is the 
natural generalisation of the standard quantum mechanical harmonic oscillator we 
have defined the supersymmetric annihilation operator A which transforms the E,, = nw 
energy eigenspace into the E,,- ,  two-dimensional eigenspace. 

The existence of this operator allowed us to define the candidate's supercoherent 
states as its eigenstates. Actually there exists a two-dimensional eigenspace para- 
metrised by Iz, 8, +) having a natural orthogonal basis (123, lzs)} composed by a pure 
fermionic state and a pure supersymmetric state (in the sense that the mean value of 
the Klein operator when the system is set in 12,) vanishes). They both have the same 
norm. 

The sets {Irf), Iz,)} constitute the right generalisation of the well known coherent 
states lz) of the harmonic oscillator. They both have a classical behaviour, do not 
spread in time and have a fixed uncertainty, which reaches the Heisenberg minimum 
for the set {lzf)}. Their energy has also a classical behaviour, particularly good for the 
pure fermionic supercoherent states. We have shown that the fermionic states lzf) 
constitute the more classical states of the supersymmetric harmonic oscillator. 

It seems natural to conjecture that for extended supersymmetric quantum 
mechanical systems there will always exist a finite set of supercoherent states which 
will have all the nice classical properties found in this model. 
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